OBJECTIVES OF LARGE-SCALE IN SITU TESTING

- **◆ EXAMINE M-H-TINTERACTIONS**
- ◆ GAIN EXPERIENCE IN EVALUATING ROCK BOUNDARY CONDITIONS AND INSTALLATION AND PERFORMANCE OF INSTRUMENTS AND LARGE VOLUMES OF SEALING MATERIALS
- ◆ EVALUATE MATHEMATICAL MODELS AGAINST OBSERVED BEHAVIOUR

		ISSUEDS (AND DEDSCRIP)						
Starbbay (Negres)		LAVIORAMORAM SINVIDIOS ODE MATUDRIAL PROPRIRILIS & BEISAMORUR	MUMBRICAL MODELLINGOE SYSTEM PERFORMANCE	ACDINIANTE OF THE STATE OF THE				
395 alsie 10 (a1980 (je) 1985)	Borehole drillingBuffer placementBackfill placement	° Buffer swelling ° Buffer K & α ° Clay longevity	° Hygro-thermo-mech- anical properties of buffer & backfill	° Buffer/backfill/rock interactions				
191630-23 (1928) (o 1928) 	° Borehole sealing ° Shaft &tunnel plugs		 Isothermal water uptake by clay barriers Bentonite extrusion 	 Water uptake by bentonite Hydro-mechanical interactions between clay/concrete/rock 				
Piege 3. (1986 de 1992).	Grouting: fracture zones moderately fractured rock excavation disturbed zones	Clay & cement grouts: ° rheology ° sealing properties ° longevity	 Water flow in grouted rock Grout penetration Rock movement Cement longevity 	 Limits of sealing by grouting Morphology of injected grouts Effects of heat on grouted rock 				

(GROUT 1.42 mm PLAGIOCLASE

FELDSPAR

In Situ Hydraulic Conductivity Test Results

URL Shaft

Property	GH1		GH2		НС9	
	Before	After	Before	After	Before	After
Transmissivity (m ² /s)	3.2*10-7	1.0*10 ⁻⁸	4.2*10-7	5.7*10 ⁻⁹	1.5*10 ⁻⁵	1.1 * 10 ⁻
Equivalent single fracture aperture (μ m)	83.4	26.3	91.2	21.7	298	58
Hydraulic conductivity (m/s)	4.0* 10 ⁻⁸	1.2*10 ⁻⁹	7.0* 10-8	9.5* 10 ⁻¹⁰	2.1* 10-6	1.6* 10

Notes:

1. Hydraulic conductivity is calculated using the total thicknesses of the fracture zone observed in the drillhole logs.

'SHOT- CLAY", WHAT IS IT ?

A Pneumatically Placed Bentonite or Bentonite/ Aggregate Material

Purposes:

- To fill cracks or voids not occupied by blocks
- To create a dense, level base for block placement
- Create tight contact with walls, roof
- can be trimmed as required
- To create a uniform, relatively low permeability wetting surface

"SHOT - CLAY" EXPERIENCE

Trial:

Clay - Aggregate mixtures placed using shotcreting technology.

Results:

Various mixtures of bentonite and aggregate were successfully placed

Materials: 25% to 70 % Bentonite

Bulk Densities 1.6 to 1.8 Mg/m3

Dry Densities 1.3 to 1.5 Mg/m3

Clay Densities 0.5 to >0.8 Mg/m3

"SHOT - CLAY"

Material Properties Expected

Hydraulic Conductivity:

Shot-Clay 5 x 10⁻¹² to 1 x 10⁻¹⁰ m/s

Bulk Seal 1 x 10-12 to 1 x 10-13 m/s

Swelling Pressure:

Shot-Clay Kunigel VI Material < 200 kPa

Wyoming Material < 600 kPa

Bulk Seal Kunigel VI Material > 600 kPa

Wyoming Material > 6000 kPa

GRANULAR BACKFILL

- CEC STUDY (1) HAS DEMONSTRATED PREPARATION OF A GRANULAR BACKFILL OF HIGH DENSITY PELLETS MIXED WITH CLAY POWDER
- EMPLACED DENSITY OF 1.7 Mg/m³ ACHIEVED, WITH k
 OF 10⁻¹¹ m/s
 - (1) G. Volckaert et al. (1995) W & D 95/66/C072052/FB/mvo/P-27

Etat 0 (0 h) Etat 15 (25,7 h) Etat 16 (45,4 h) Etat 39 (3501 h)

OBJECTIVES OF BUFFER-CONTAINER EXPERIMENT

EVALUATE

- ♦ THERMAL CONDUCTIVITY AND TEMPERATURE DISTRIBUTIONS
- ◆ SWELLING CRACKING AND SELF-HEALING OF BUFFER
- **◆ MODELS AGAINST OBSERVATIONS**

Buffer/Container Experiment

INSTRUMENTATION IN BUFFER-CONTAINER EXPERIMENT

- **◆ THERMOCOUPLES**
- **◆ THERMISTORS**
- **◆ EARTH PRESSURE CELLS**
- **◆ PSYCHROMETERS**
- **◆ THERMAL NEEDLES**
- **◆ PIEZOMETERS**

Temperatures Along Buffer Centre And On Heater Surface

Moisture Content Distribution In The Buffer/Container Experiment After 30 Months

Interpretation of water content changes measured by psychrometers and thermal needles in the Buffer/Container Experiment

Comparison of water content distibutions in the Buffer/Container Experiment

(a) (b)

- (a) End-of-test water content distribution at Day 897.
- (b) Best interpretation of water content distribution measured by psychrometers and thermal needles at Day 525.

0-06-BWS

EDZ SEALING REQUIREMENTS

- SITE AND DESIGN DEPENDENT; OVERALL SYSTEM PERFORMANCE WILL DETERMINE THE SPECIFIC SEAL SYSTEM PERFORMANCE REQUIREMENT
- EXTENT OF EXCAVATION DAMAGE CAN BE REDUCED BY
 - CONTROLLED BLASTING
 - OPTIMIZING EXCAVATION SHAPE AND ORIENTATION
- SIGNIFICANCE OF THE EDZ CAN BE REDUCED BY
 - SEALING THE EDZ TO ITS PRACTICAL LIMIT
 - USING IN-ROOM EMPLACEMENT TO ENSURE CONTAMINANTS GO THROUGH BACKFILL
- IT IS POSSIBLE THAT EVEN IF PERFORMANCE ASSESSMENT SUGGESTS NO ADVERSE EFFECTS FROM AN UNSEALED EDZ, A DECISION MAY BE MADE TO SEAL IT

THE TUNNEL SEALING EXPERIMENT

Borehole Sealing

Use of compacted bentonite plugs has been demonstrated for sealing of exploration boreholes.

Copper Tube with Bentonite for Borehole Sealing